If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2v^2+13v-15=0
a = -2; b = 13; c = -15;
Δ = b2-4ac
Δ = 132-4·(-2)·(-15)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*-2}=\frac{-20}{-4} =+5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*-2}=\frac{-6}{-4} =1+1/2 $
| (1/6)x=2 | | 2y+4-4=18 | | 9/7+7m/4=99/28 | | 3(4-2x)=5x+34 | | 3/20=2t/3-t/5 | | Z=2-6i | | 6p+30=4(5p-1)-8 | | -12(x-12)=-9(1=7x | | 8y-16=6(y-1) | | (2k-4)(k+3)=0 | | 8(6-a)=8a+(4-a) | | 27=3c-18-2c | | 6z+4-4z=9 | | 4p=3p+9 | | 21-5+7y=-32 | | 3x-9+8=5x+12 | | -9(u+7)=4u-37 | | 4x=0.375 | | 3x-9+8=12+9-8 | | 9-2f=-f | | 5(2x-2)=10+10 | | −11−5z=6(5z+4) | | 2x+3=(12x+8) | | X/3+4=x/2+3(1/2) | | 10+8x=19x-1 | | X/3+4=x/2+31/2 | | 184=8(n+4) | | 7-9q=12+8q | | a/2+6=3 | | 5=7/6(30)+x | | x+9=3x-35 | | 2(-2-7k)-7=101 |